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Abstract. The non-relativistic hyperfine structure parameters, the Fermi contact, the spin-dipolar, the
orbital and the electronic quadrupole terms, of the lithium-like ground state and low-lying states, 1s2ns2S
and 1s2np2P (n = 2, 3, 4, and 5), are calculated with the full core plus correlation (FCPC) wave functions.
With the 794- and 1185-term Slater-type expansions, the Fermi contact interactions of the 22S and 22P
states in 7LiI are determined to be 2.90313 a.u. and -0.21359 a.u., respectively. By using the global identities,
the Fermi contact term is also given for the ground state in LiI. The typical patterns of convergence of the
expectation values of the Fermi contact interaction for the lithium 1s22s and 1s22p states are analyzed.
The contribution from the core polarization is examined. The calculated results of the lithium-like systems
from LiI to NeVIII are compared with the previous theoretical results obtained with other methods, and
with the experimental data available in the literature.

PACS. 31.15.Ar Ab initio calculations – 31.30.Gs Hyperfine interactions and isotope effects

1 Introduction

Hyperfine structure of three-electron systems has been
studied extensively over the past two decades [1–8].
Experimentally, some properties of the atomic nucleus can
be obtained by investigating the hyperfine structure of the
atomic energy levels. The nuclear electric quadrupole mo-
ment, which is difficult to measure directly with nuclear
physics techniques, can be determined using the measured
hyperfine structure splitting and the accurate theoreti-
cal results [9]. On the other hand, with development of
the experimental methods, the hyperfine structure con-
stants have been measured to very high precision for the
light elements. For example, the experimental value of the
A1/2 of the 2s2S state in 7LiI is 401.7520433(5) MHz [1].

It is accurate to about 1 par per 106 (ppm). Recently,
Windholz et al. reported the results of the Laser-Atomic-
Beam(LAB) measurement for the hyperfine structure con-
stants of the 22S and 22P states in 6,7Li with a somewhat
lower accuracy of 10% [7]. From the theoretical point of
view, the accurate theoretical calculation of the hyper-
fine structure is necessary to interpret these experimental
data.

Up to now, the most sophisticated theoretical calcula-
tions of the hyperfine structure parameters for the light
atoms have been carried out using many-body perturba-
tion theory(MBPT) and its relativistic version(RMBPT)
by Lindgren and coworkers [10–12], variational wave
function in Hylleraas coordinates [13–19], as well as a
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large-scale multiconfiguration Hartree-Fock method by
Sundholm and Olsen [9] and Fischer et al. [20,21]. The lat-
ter method has been applied extensively determined the
various atomic properties. As mentioned by Yan et al. [22],
Lindgren’s MBPT results of Fermi contact terms for the
22S and 22P states disagree significantly with the experi-
mental data and other theoretical results. The discrepancy
arises from the truncated particle wave function summa-
tion from one set of diagrams [23]. Very recently, Drake
et al. developed a variational technique for the lithium
atom with multiple basis sets in Hylleraas coordinates [24,
25]. Their result for hyperfine structure constant of the
22S state in LiI is very close to McKenzie’s non-relativistic
limit, 2.9060(3) a.u. [26]. Though the Fermi contact terms
of LiI and BeII were discussed in detailed in reference [22],
other hyperfine structure parameters were not given. Also,
the large-scale multiconfiguration Hartree-Fock(MCHF)
method provides an alternative and effective approach
to calculate the hyperfine structure constants. Recently,
MCHF calculations of 7LiI were reported by Calsson et al.
[20] and other authors. Their results for the 1s22s state are
in very good agreement with experiments.

Recently, Chung has developed an elegant and com-
plete variational approach, namely, the full core plus corre-
lation(FCPC) method [27]. This method has been success-
fully applied to three- and four-electron systems with the
1s2-core. Many elaborate calculations, especially, for the
oscillator strenghts, show that FCPC wave functions have
a reasonable behavior over the whole configuration space
[28–30]. As is well known, the theoretical calculations of
the hyperfine structure parameters depend sensitively on
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the behavior of the wave function in the proximity of the
nucleus. In addition, core polarization effects for the low
l states need to be included in the nonrelativistic wave
function. In other words, a careful treatment of the corre-
lation effect is necessary if we make definitive comparison
with measurements for the 22P state. The purpose of this
work is to calculate the hyperfine structure parameters of
the 1s2ns and 1s2np states (2 ≤ n ≤ 5) for the lithium-like
systems from Z = 3 to 10 by using the FCPC method, and
to provide furthermore a re-examination of the quality of
our FCPC wave functions.

In Section 2 we give a brief account of the theory. The
numerical results, including Fermi contact, spin-dipolar,
orbital and electric quadrupole terms, and the discussion
is presented in Section 3. A conclusion is given in Section 4.

2 Theory

The hyperfine structure of the atomic levels is caused by
the interaction between the electrons and the electromag-
netic multiple moments of the nucleus. The hyperfine in-
teraction Hamiltonian can be represented be a multiple
expression [20,31]

Hhys =
∑
k=1

T (k) ·M (k), (1)

where T (k) andM (k) are spherical tensor operators of rank
k in the electronic and nuclear space, respectively. The
k = 1 term represets the magnetic-dipole interaction be-
tween the magnetic field generated be the electrons and
nuclear magnetic dipole moments, the k = 2 term the
electric quadrupole interaction between the electric field
gradient from the electrons and the non-spherical charge
distribution of the nucleus. The contributions from higher-
order terms are much smaller and can offen be neglected.

In the non-relativistic framework, the electronic tensor
operators, in atomic units, can be written as
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where α is fine structure constants, gl = 1 − m/M and
gs = 2.0023193 are the orbital and electron spin g factors
(taking into account the normal mass effect and QED ef-
fect), respectively. δ is the three-dimensional delta func-
tion. M is the nuclear mass.

Generally, the uncoupling and the coupling hyperfine
parameters, in a.u., are defined as [20]:
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where ML = L and MS = S. In these expressions, µI
and Q are the nuclear magnetic moment and the nuclear
quadrupole moment, respectivily. I is the nuclear spin and
J is the atomic electronic angular moment.

By using standard tensor-operator technique, the cor-
respondence between uncoupling and coupling parameters
of the present atomic configurations can be written:

A1/2 =
CµI

3I
gsac, (for 2S state) (11)
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B3/2 = −DQbq, (15)

whereA1/2, A3/2, A1/2,3/2 andB3/2 are expressed in MHz,
the uncoupling constants in atomic units and µI in nuclear
magnetron (µN ), respectively. In equations (11), (12),
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(13), (14) and (15), C and D are the conversion factors
from a.u. to MHz. They are 95.41067 and 2.3497×105, re-
spectively. So that our results calculated from these equa-
tions can be compared with the experimental data which
are mostly given in MHz.

In practice, it is difficult to obtain a wave function at
small separations with good quality. On the other hand, as
long as Ψ is the true eigenfunction of the non-relativistic
Hamiltonian, it satisfies the electron-nuclear cusp condi-
tion introduced by Kato [32] and Steiner [33], namely,

∂ρ(r)

∂r
|r=0 = −2Zρ(0) = −2Z 〈δ(ri)〉 , (16)

where ρ(r) is the charge density.
Hiller et al. suggested that the average of the oper-

ator involving a δ(r) function may be replaced by that
of a global operator [34]. These identities are applied to
the calculation of the electron-electron, electron-nucleus
contact interactions and Fermi contact term, etc.

For the our case, we recast ac as follows:
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We may use an identical global operator form to replace
the delta function form in the Fermi contact interaction.
Of couse, in practice only an approximate wave function
are available. So that equation (17) is no longer exactly
valid. In other words, the agreement between the values
calculated from equation (4) and equation (17) becomes
an important judgement of the quality of the wave func-
tions used.

We now turn to the description of the wave func-
tion used in this work. According to the FCPC method
[27–30], the wave function for the three-electron systems
with a 1s2-core can be written as

Ψ(1, 2, 3) =A

[
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where A is an antisymmetrization operator. Φ1s1s is a pre-
determined 1s2-core wave function which is represented by
a CI basis set, i.e.,

Φ1s1s(1, 2) =A
∑
kn,l

Cknlr
k
1r
n
2 exp(−βlr1 − ρlr2)

× Yl(1, 2)χ(1, 2). (20)

Table 1. Convergence study of the nonrelativistic Fermi
contact term (ac) for the lithium 1s22s2S and 1s22p2P
states.(in a.u.)

Angular No. of Angular No. of
component terms 22S component terms 22P
core +2s 9 2.329506 core +2p 8 0.000000

(0, 0)0,0 165 0.545335 (0, 1)1,2 120 0.000000
(0, 0) 0, 0a 22 −0.125613 (0, 1) 1, 2a 81 0.004406
(0, 1)1,1 123 0.134529 (1, 2) 1, 0a 35 0.000003
(0, 1) 1, 1a 22 0.000606 (1, 2)1,0 35 0.000015
(1, 0)1,1 34 −0.000233 (0, 0) 0, 1a 93 −0.198533
(0, 2)2,2 162 0.013299 (1, 0) 1, 0a 125 −0.022337
(0, 2) 2, 2a 32 0.000002 (0, 2)2,3 56 0.000136
(0, 3)3,3 50 0.003322 (0, 2) 2, 3a 56 0.001439
(0, 4)4,4 32 0.001265 (0, 3)3,4 56 0.000027
(0, 5)5,5 34 0.000090 (0, 3) 3, 4a 55 0.000395
(0, 6)6,6 34 0.001373 (0, 4)4,5 56 0.000035
(1, 2)1,1 35 −0.000935 (0, 4) 4, 5a 55 0.000146
(1, 2) 1, 1a 20 0.000695 (0, 5)5,6 56 0.000018
(2, 3)1,1 20 −0.000075 (0, 5) 5, 6a 56 0.000065

Total 794 2.90313 (0, 6)6,7 56 0.000010
(0, 6) 6, 7a 56 0.000033
(1, 1)0,1 34 0.000577
(1, 1)2,3 13 0.000002
(1, 2)1,2 34 0.000068
(1, 3)2,3 13 −0.000005
(2, 3)1,0 35 0.000000

Total 1185 −0.21359

a In these angular components the spins of the first two elec-
trons couple into a triplet.

The angular part is

Yl(1, 2) =
∑
m

〈lm, l−m|0, 0〉Ylm(θ1, ϕ1)Yl−m(θ2, ϕ2).

(21)

χ(1, 2) is a two-electron singlet spin function. The linear
and non-linear parameters in equation (20) are determined
by optimizing the energy of the He-like 1s1s system. The
factor multiplying with Φ1s1s is a linear combination of the
Slater type orbitals for the valance electron. The second
term on the right-hand side of equation (19) descibes the
core relaxation and the intershell correlation in the three-
electron system. The basis function is chosen as

Φn(i),l(i)(1, 2, 3) = ϕn(i)(R)Y LMl(i) (R̂)χSMS . (22)

The radial and angular basis functions are
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respectively, where l(i) represents the set of l1, l2, l12 and
l3. The angular component is simply denoted as

li = [(l1, l2)l12, l3] , (25)

where l12 and l3 coupling into L is implicitly implied. Us-
ing a similar notation, the doublet spin function can be
represented by

χSMs = [(s1, s2)s12, s3] . (26)

It has two possible spin doublets

χ1 = [(s1, s2)0, s3] , (27)

χ2 = [(s1, s2)1, s3] . (28)

In the present work, these FCPC wave functions for the
n2S and n2P (n = 2, 3, 4 and 5) states of Li-like systems
are obtained by using the variational method. The hyper-
fine structure parameters of these states are calculated by
using our FCPC wave function determined above.

3 Results and discussions

The same seven angular component 222 terms are used
in the wave function for the 1s2-core. For the 1s2ns(2 ≤
n ≤ 5) states in Li we chose the wave function with nine
di terms and 794, 488, 575 and 399 terms in the Φn(i),l(i) of
equation (19) for n = 2, 3, 4 and 5 respectively. Similarly,
we chose the wave function with nine di terms and about
300-600 terms in the Φn(i),l(i) of equation (19) for the other

Z systems. For the 1s2np states from LiI to NeVIII, we
used the wave function with eight di terms and about
1000-1200 terms in the Φn(i),l(i) of equation (19).

A detailed convergence chracteristic study of the Fermi
contact term ac for the lithium 1s22s and 1s22p states is
given in Table 1. We see from this table that their conver-
gence is rather fast. In addition, we also note that unlike
the calculation of the energy and oscillator strength, the
small oscillation of the convergence pattern for the Fermi
contact term with increasing numbers of the partial wave
function is encountered. Therefore, some considerable ef-
forts have been spent to choose the relevant partial wave
function in our present calculations. For this reason, our
choice of the partial wave function differs slightly from the
that in reference [30]. For the 22S state, the contribution
from the second term of the equation (19) is very obvious.
It provides about 20% of the total value of this term. The
contributions to the enegy from the partial wave function
[(0, 1)1, 1], which differs from the 1s22s configuration in
the angular symmetry, is most important [27]. This is in
accordance with that in Fischer’s MCHF approach [35].
But for the Fermi contact term, the other partial wave
functions, [(0, 0)0, 0], and [(0, 0)0, 0]∗, also provide the sig-
nificant contributions. However, for the 22P state, a dra-
matic situation occurs if we note that the first term of
equation (19) does not contribute to the Fermi contact
term. In other words, the partial wave functions which

describe the core relaxation and the intershell correlation
have to be included in the total wave function.

Both the theoretical calculation and measurement of
the hyperfine structure for the three-electron systems has
received considerable attention in the literature. The most
extensively studied hyperfine structure of the lithium-like
systems is probably for LiI. Some typical theoretical re-
sults as well as experimental data of this property have
been collected in Tables 2 and 3. The coupling constants
corresponding to states for LiI are given in these tables.
In Table 2 we also gave the calculated values of the Fermi
contact term for the 22S state by using the global opera-
tor defined by equation (17). Although there is somewhat
of a difference between our two results obtained by differ-
ent equations, we tend towards considering that the result
obtained by equation (4) is more reliable. As can be seen
from the Table 1, the final Fermi contact term reported
here appears to have converged to the fifth significant
digit. It is fairly satisfactory, considering that the present
variational calculation weights the energy important re-
gion away from the nucleus. In order to explain further
this conclusion, the cusp condition has also been checked
up by using FCPC wave functions. We found that the cusp

ratio,
dρ

dr
|r=0/− 2ρ(0), is 3.0−1.84× 10−4 for the ground

state of the lithium. This value is in very close agreement
with the nuclear charge Z = 3. So we believe that the wave
functions employed in this work can give self-consistent
result, particularly, at the region near the nucleus. In the
Hylleraas approach the expectation of the Hiller-Sucher-
Feinberg operator cannot as yet be evaluated. To the best
of our knowledge, there is only one similar consideration
using the configuration interaction(CI) type wave func-
tion which is constructed from Slater-type orbitals for Li
ground state by Bhatia and Sucher [43]. Their results are
3.0717 and 2.9014, by using equations (4) and (17), re-
spectively. As can be seen from Table 2, the agreement
between our corresponding results is better than that of
Bhatia and Sucher. This means that our wave function
used in the present work is reasonable and accurate in the
full configuration space. The recent results of McKenzie
[26], 2.90600, and of Yan et al. [22], 2.90592, are proba-
bly the most accurate in the literature. The uncertainty
in the most accurate experimental datum, 2.906023(3), of
Beckmann et al. is rather small [1]. Most of the theoretical
values at most agree with the measured values to five sig-
nificant figures. In addition, Yan et al. also gave the small
corrections from the finite nuclear mass, size, relativistic
and QED effects. Unfortunately, these corrections are in
the wrong direction away from the experimental values.
For the 22P state, our result of the Fermi contact term,
−0.21359, is in excellent agreement with the experimental
value of Orth et al., −0.2135(10). In contrast, most of the
results from the MCHF and MBPT approach fall out-
side the experimental uncertainty. Note that the small
changes of the uncoupling parameters could cause the ob-
vious changes in the coupling parameters, considering that
the multiplying factor CµI/3I is not a small quantity, as
one can see from other theoretical results of Table 3.
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Table 2. Comparison of the nonrelativistic hyperfine parameter for the 7Li 1s22s2S state. The Fermi contact term (ac) is
expressed in atomic units and the A1/2 in MHz.

Author Method Ref. ac A1/2

Theory

Larsson (1968) 100-term Hylleraas [13] 2.906 401.74
Garpman et al. (1976) MBPT [11] 2.9065 401.81

Lindgren (1985) MBPT [12] 2.91726 403.31
King et al. (1986) 352-term Hylleraas [16] 2.904 401.47

King (1989) 602-term Hylleraas [17] 2.906359 401.79
King et al. (1990) 296-term Hylleraas [18] 2.907051 401.89

Blundell et al. (1989) all-order MBPT [36] 2.9119 402.56
M̊artensson et al. (1990) Coupled-Cluster [37] 2.89819 400.67
Sundholm et al. (1990) MCHF [9] 2.9039 401.46
Esquivel et al. (1991) CI [38] 2.90856 402.10

McKenzie (1991) 1134-term Hylleraas [26] 2.9060 401.75
Carlsson et al. (1992) MCHF [20] 2.9047 401.57

Tong et al. (1993) MCHF [21] 2.9051 401.62
Yan et al. (1996) Extra-Hylleraas [22] 2.90592 401.74

This work FCPC(CI)a 2.90313 401.352
This work FCPC(CI)b 2.89124 399.708

Experiment

Beckmann et al. (1974) ABMRc [1] 2.906023(3) 401.7520433(5)
Winholz et al. (1990) LABd [7] 2.9064(18) 401.81(25)

a Obtained by using equation (4) in the text.
b Obtained by using equation (17) in the text.
c ABMR means Atomic Beam magnetic resonance.
d LAB means Laser Atomic Beam Spectroscopy.

In Table 4, we compare our results of the uncou-
pling constants for the lithium-like systems with those
of Garpman et al. [11]. They have used an effective-
operator form of the many-body theory to calculate the
hyperfine structure. The effect of core polarization was
included in their calculations. The experimental data of
the hyperfine structure of the three-electron systems are
available only for the 1s22s states of 6,7LiI, 9BeII, and
19FVII, for the 1s22p states of 6,7Li, 9BeII, 11BIII, and
for the 1s2ns (n = 3 and 4) of 7LiI, we are not aware
of any experimental results for other Z systems. For
the 22S state in 9BeII, 19FVII, the measured values of
A1/2, −625.008837048(10) MHz [44], and 88855(525) MHz
[45], are in agreement with our present theoretical re-
sults, −624.5144 MHz and 89549.546 MHz, respectively.
For the 22P state in 9BeII, the measured value of A1/2,
−118.6(3.6) MHz [46], also agree with our prediction,
−117.24876 MHz. But the accuracy of the experimental
value of A3/2, −19.2(28.6) MHz, is too low to draw any
definite conclusion on the comparison with the theory. For
the 2p2P state in 11BIII, the beam-gas Hanle technique of
Kowalski et al. yields A3/2 = 123.6(4.0) MHz [47]. Our
calculated result is 119.185 MHz.

In Table 5, we give a comparison between present
results and King’s results for the other low-lying n2S
state. The Hylleraas-type variational calculations [19]
of King agree to about three figures with our results.

For the 3s2S state of 7LiI, our calculated A1/2 =
93.251 MHz. The agreement with the recent measured
value of 94.68(22) MHz of Stevens et al. [23] is of the or-
der of one percent. But is agrees well with an earlier mea-
surement, 92(3) MHz [8]. Our value of A1/2(42S, 7LiI),
35.068 MHz, is in good agreement with the value mea-
sured, 36.4(4.0) MHz, using the method of Doppler-free
two-photo spectroscopy [48].

4 Conclusion

In this work we have calculated the hyperfine structure
constants of the ground state and low-lying excited states
for the lithium isoelectronic sequence from Z = 3 to 10, by
using the FCPC wave function. The results are well con-
verged with the increasing numbers of the partial wave
functions. The low angular-momentum components con-
tribute much more than the higher ones. We have empha-
sized the importance of core polarization in the present
paper. The careful choice for the partial wave functions
is necessary to obtain an excellent agreement between the
theory and the experiment. In other words, our present
FCPC method is very flexible. The systematical improve-
ment on the Fermi contact term, the spin-dipolar and
the orbital terms is possible by optimizing the additional
the partial wave functions. We find that our wave func-
tions provide satisfactory results. The uncertainty of these
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Table 3. Comparison of the nonrelativistic hyperfine parameters for the 7Li 1s22p2P state. The uncoupling constants Fermi
contact (ac), spin-dipolar(asd), orbital(al), and electric quadrupole (bq) terms are expressed in atomic units, and the A1/2, A3/2,
and A1/2,3/2 in MHz.

Author Method Ref. ac asd al bq A1/2 A3/2 A1/2,3/2

Theory
Nesbet (1970) Bethe-Goldstone [39] −0.2146 −0.0135 0.0632 −0.0228 45.9935 −3.03534 11.9165
Lunell (1973) SO-SCF [40] −0.2132 −0.0117 0.0588 −0.0235 42.2263 −3.32909 11.8595

Ahlenius et al. (1973) 78-term Hylleraas [14] −0.2162 −0.01342 0.0634 −0.02016 46.01186 −3.07042 12.0179
Ahlenius et al. (1978) 97-term Hylleraas [15] −0.2086 −0.01352 0.0628 −0.02236 45.63430 −2.81680 11.6090

Glass et al. (1976) CI [41] −0.2129 −0.0138 0.0625 −0.0247 46.13676 −3.09506 11.7381
Garpman et al. (1976) MBPT [11] −0.2070 −0.01332 0.06262 −0.022536 45.23440 −2.74025 11.5574

Lindgren (1985) MBPT [12] −0.2208 −0.01348 0.06308 −0.02266 46.21848 −3.33485 12.1974
Sundholm et al. (1990) MCHF [9] −0.2158 −0.01346 0.06303 −0.02253 45.94662 −3.10856 11.9671
Sundholm et al. (1990) Semitheoretical [9] −0.2148 −0.01346 0.06307 45.91157 −3.05696 11.9237
Carlsson et al. (1992) HF [20] 0 −0.01171 0.05857 −0.02343 32.35185 −6.46262 2.01714
Carlsson et al. (1992) MCHF [20] −0.2155 −0.01346 0.06305 −0.02255 45.93832 −3.09198 11.9546
Carlsson et al. (1992) MCHFa [20] −0.2156 −0.01346 0.05304 −0.02255 45.94016 −3.09797 11.9585

Tong et al. (1993) MCHF [21] −0.2175 −0.013341 0.06308 −0.02187 45.94890 −3.15236 12.0367
Yan et al. (1996) Extra-Hylleraas [22] −0.2148

This work FCPC(CI) −0.21359 −0.01341 0.06309 −0.02242 45.79295 −2.99186 11.87853
Experiment

Ritter (1965) ODRb [3] 46.17(35)
Lyons et al. (1970) Analysis of Exp [42] −0.2128 −0.0138 0.0626 46.159 −3.07 11.7404
Orth et al. (1975) ODRb [2] −0.2135(10)−0.01356(8) 0.0627(3)−0.0232(30) 45.914(25)−3.055(14) 11.823(81)

Nagourney et al. (1978) LCc [4] −2.95(4)
Shimizu et al. (1987) LIFd [5] −3.08(4)
Carlsson et al. (1989) QBe [6] −3.08(4)
Windholz et al. (1990) LABf [7] 46.05(30) −3.18(10)

a Corrected for relativistic, finite nuclear size, and finite nuclear mass effects.
b ODR means Optical Double Resonance.
c LC means Level Crossing.
d LIF means Laser Induced Fluorescence with delayed detection.
e QB means Quantum Beats.
f LAB means Laser-Atomic-Beam Spectroscopy.

Table 4. Comparison between different theoretical calculations of ac, asd, al, bq for the Li-like 1s22s and 1s22p configurations
(in a.u.).

22S 22P

ac ac asd al bq

LiI This work 2.90313 −0.21359 −0.01341 0.06309 −0.02242

Ref. [11] 2.9085 −0.2070 −0.01332 0.06262 −0.02254

BeII This work 12.49306 −1.07036 −0.10197 0.48509 −0.18422

Ref. [11] 12.559 −1.0548 −0.10214 0.4832 −0.18312

BIII This work 31.45032 −2.43966 −0.32285 1.53639 −0.59362

Ref. [11] 31.56 −2.4105 −0.3222 1.539 −0.5936

CIV This work 62.75126 −4.24652 −0.72193 3.46632 −1.35081

Ref. [11] 62.91 −4.1625 −0.7208 3.466 −1.35

NV This work 109.44747 −6.49565 −1.35185 6.52407 −2.55702

Ref. [11] 109.61 −6.3735 −1.3498 6.525 −2.5548

OVI This work 174.40823 −9.16048 −2.25818 10.95936 −4.29855

Ref. [11] 174.63 −9.075 −2.26 10.97 −4.312

FVII This work 267.45862 −12.23734 −3.49613 17.02184 −6.70673

Ref. [11] 260.8 −12.12 −3.498 17.03 −6.712

NeVIII This work 371.52344 −15.80422 −5.11818 24.96146 −9.85859

Ref. [11]
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Table 5. Comparison between different theoretical calcula-
tions of the Fermi contact term (ac) for the Li-like 1s2ns
(n = 3, 4, and 5) configurations. (in a.u.)

32S 42S 52S

LiI This work 0.67451 0.25366 0.12100

Ref. [19] 0.67026 0.23065 0.113117

BeII This work 3.18087 1.25071 0.61419

Ref. [19] 3.17253 1.25229 0.61800

BIII This work 8.33669 3.34097 1.65744

Ref. [19] 8.32806 3.34148

CIV This work 17.02574 6.89190 3.44268

Ref. [19] 17.01778 6.89443

NV This work 30.13893 12.39569 6.16654

Ref. [19] 30.12749 12.29126

OVI This work 48.41444 19.98798 10.00637

Ref. [19] 48.54534 19.90327

FVII This work 73.12239 30.05274 15.19325

Ref. [19] 73.15853 30.10441

NeVIII This work 104.78986 43.23145 21.87968

Ref. [19] 104.8572 43.26988

results should be about five digits. Since we concentrate
our attention on the non-relativistic hyperfine structure
parameters, the small relativistic corrections are not com-
puted in this work. Our results for Li is in good agreement
with the recent Hylleraas calculations, and with the ex-
perimental data. For the other Z systems, at present very
little experimental data is available in the literature. For
these Li-like ions, our calculated values agree reasonably
well with the other theoretical results in the literature. We
hope that the present results may stimulate experimental-
ists to further their efforts to carry out measurements of
these systems.

This work is supported by the National Natural Science Foun-
dation of China and the State Education Commission of China.
The authors express their gratitude to Professor Kwong T.
Chung for his hospitality.

References

1. A. Beckmann, K.D. Böklen, D. Elke, Z. Phys. 270, 173
(1974).

2. H. Orth, R. Veit, H. Ackermann, E.W. Otten, Z. Phys. A
273, 221 (1975).

3. G.J. Ritter, Can. J. Phys. 43, 770 (1965).
4. W. Nagourney, W. Happer, A. Lurio, Phys. Rev. A 17,

1394 (1978).
5. F. Shimizu, K. Shimizu, Y. Gonmi, H. Takuma, Phys. Rev.

A 35, 3149 (1987).
6. J. Carlsson, L. Sturesson, Z. Phys. D 14, 281 (1989).
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